Flo June 13 (R) M.A kpime 2

1. The hyperbola H has foci at $(5,0)$ and $(-5,0)$ and directrices with equations $x=\frac{9}{5}$ and $x=-\frac{9}{5}$.

Find a cartesian equation for H.

$$
\text { 1. } \begin{aligned}
\pm a e & = \pm 5 \\
a e & =5 \Rightarrow a=\frac{5}{e} \quad e=\frac{5}{a}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Divectrizes } \Rightarrow \quad \frac{9}{5}=\frac{a}{e}, \quad-\frac{9}{5}=-\frac{a}{e} \\
& \therefore \quad \frac{9}{5}=\frac{a}{5 / a}=\frac{a^{2}}{5} \\
& \therefore \quad a^{2}=9 \Rightarrow a=3 \\
& \therefore \frac{x^{2}}{a} \frac{y^{2}}{16}=1 \rightarrow \frac{a}{a=3}, \quad b^{2}=\mid a^{2}\left(1-e^{2}\right) \Rightarrow b^{2}=16 \Rightarrow b=4 \\
& \therefore b^{2}=9\left(1-\frac{25}{9}\right)<b^{2}
\end{aligned}
$$

2. Two skew lines l_{1} and l_{2} have equations

$$
\begin{aligned}
& l_{1}: \mathbf{r}=(\mathbf{i}-\mathbf{j}+\mathbf{k})+\lambda(4 \mathbf{i}+3 \mathbf{j}+2 \mathbf{k}) \\
& l_{2} ; \mathbf{r}=(3 \mathbf{i}+7 \mathbf{j}+2 \mathbf{k})+\mu(-4 \mathbf{i}+6 \mathbf{j}+\mathbf{k})
\end{aligned}
$$

respectively, where λ and μ are real parameters.
(a) Find a vector in the direction of the common perpendicular to l_{1} and l_{2}
(b) Find the shortest distance between these two lines.
$2(a)$.

$$
\left(\begin{array}{l}
4 \\
3 \\
2
\end{array}\right) \times\left(\begin{array}{c}
-4 \\
6 \\
1
\end{array}\right)=\begin{array}{cc}
4 & 3 \\
-4 & 6
\end{array} \frac{2}{1} \times-4 \times \frac{3}{6} 1
$$

$$
\therefore \frac{78}{39} \Rightarrow d=2
$$

3. The point P lies on the ellipse E, with equation

$$
\frac{x^{2}}{36}+\frac{y^{2}}{9}=1
$$

N is the foot of the perpendicular from point P to the line $x=8$
M is the midpoint of $P N$.
(a) Sketch the graph of the ellipse E, showing also the line $x=8$ and a possible position for the line $P N$.
(b) Find an equation of the locus of M as P moves around the ellipse.
(c) Show that this locus is a circle and state its centre and radius.

(b)

$$
\begin{aligned}
& y=k \\
& P(a \cos \theta, b \sin \theta) \\
& W(8, b \sin \theta) \\
& \therefore M:\left(\frac{8+a \cos \theta}{2}, b \sin \theta\right) \\
& \therefore \quad x=\frac{8+a \cos \theta}{2}=\frac{2 x-8}{a}=\cos \theta \\
& y=b \sin \theta \Rightarrow \sin \theta=\frac{y}{b} \\
& \therefore \sin ^{2} \theta+\cos ^{2} \theta=1=\frac{y^{2}}{b^{2}}+\frac{(2 x-8)^{2}}{a^{2}} \\
& \therefore \quad \frac{(2 x-8)^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
\end{aligned}
$$

Question 3 continued

$$
\begin{array}{r}
a=6=36 \\
a^{2}=9
\end{array}
$$

$$
\therefore \quad \frac{(2 x-8)^{2}}{36}+\frac{y^{2}}{9}=1
$$

(c)

$$
\begin{aligned}
& \frac{1}{9}+\frac{1}{9} y^{2}=1 \\
& \frac{(2 x-8)^{2}}{36}+\frac{y^{2}}{9}=\frac{[2(x-4)]^{2}}{36}+\frac{y^{2}}{9} \\
& =\frac{4}{36}(x-4)^{2}+\frac{y^{2}}{9} \\
& =\frac{1}{9}(x-4)^{2}+\frac{y^{2}}{9}=1 \\
& \therefore(x-4)^{2}+y^{2}=4
\end{aligned}
$$

\therefore Centre is $(4,0)$

$$
\text { radius }=3
$$

4. The plane Π_{1}, has vector equation

$$
\mathbf{r}=\left(\begin{array}{r}
1 \\
-1 \\
2
\end{array}\right)+s\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)+t\left(\begin{array}{r}
1 \\
2 \\
-2
\end{array}\right)
$$

where s and t are real parameters.
The plane Π_{1} is transformed to the plane Π_{2} by the transformation represented by the matrix T, where

$$
\mathbf{T}=\left(\begin{array}{rrr}
2 & 0 & 3 \\
0 & 2 & -1 \\
0 & 1 & 2
\end{array}\right)
$$

Find an equation of the plane Π_{2} in the form $\mathbf{r} . \mathbf{n}=p$

$$
\begin{aligned}
& n^{\pi_{1}}=\left(\begin{array}{cc}
1+s+t \\
-1 & +s+2 t \\
2 & -2 t
\end{array}\right) \\
& \therefore\left(\begin{array}{ccc}
2 & 0 & 3 \\
0 & 2 & -1 \\
0 & 1 & 2
\end{array}\right)\left(\begin{array}{c}
1+5+t \\
-1+5+2 t \\
2-2 t
\end{array}\right) \\
& =\left(\begin{array}{r}
2+25+2 t+6-6 t \\
-2+25+4 t-2+2 t \\
-1+5+2 t+4-4 t
\end{array}\right) \\
& =\left(\begin{array}{c}
8+2 s-4 t \\
-4+2 s+6 t \\
3+s-2 t
\end{array}\right) \\
& =\left(\begin{array}{c}
9 \\
-4 \\
3
\end{array}\right)+5\left(\begin{array}{l}
2 \\
2 \\
1
\end{array}\right)+t\left(\begin{array}{c}
-4 \\
-4 \\
-2
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \therefore n_{n}=\left(\begin{array}{l}
2 \\
2 \\
1
\end{array}\right) \times\left(\begin{array}{c}
-4 \\
6 \\
2
\end{array}\right) \quad \begin{array}{ccc}
2 \longrightarrow 2 \\
-4 & 6 \times-2 \\
6_{-} x^{2} \times{ }^{2}
\end{array} \\
& =\left(\begin{array}{c}
-10 \\
08 \\
20
\end{array}\right) \text { 路 } \\
& \Rightarrow r \cdot n=\left(\begin{array}{c}
8 \\
-4 \\
3
\end{array}\right) \cdot\binom{10}{20}=\frac{1}{-20} \\
& r \cdot 10\left(\begin{array}{c}
-1 \\
0 \\
2
\end{array}\right)=-20 \\
& \Rightarrow r \cdot\left(\begin{array}{c}
-4 \\
0 \\
2
\end{array}\right)=-2
\end{aligned}
$$

$$
I_{n}=\int_{1}^{5} x^{n}(2 x-1)^{-\frac{1}{2}} \mathrm{~d} x, \quad n \geqslant 0
$$

(a) Prove that, for $n \geqslant 1$,

$$
(2 n+1) I_{n}=n I_{n-1}+3 \times 5^{n}-1
$$

(b) Using the reduction formula given in part (a), find the exact value of I_{2}

5(a). $I_{n}=\int_{1}^{5} x^{n}(2 x-1)^{-1 / 2} d x$
Let $u=x^{n} \quad u^{\prime}=n x^{n-1}$

$$
\begin{aligned}
& V^{\prime}=(2 x-1)^{-1 / 2} V=\frac{1}{2}(2 x-1)^{1 / 2} \cdot 2 \\
& \therefore I_{n}=\left[x^{n}(2 x-1)^{1 / 2}\right]_{1}^{5}-n \int_{1}^{5} x^{n-1}(2 x-1)^{1 / 2} 2 x \\
& \therefore I_{n}=3\left(5^{n}\right)-1-n \int_{1}^{5} x^{n-1}(2 x-1)^{1 / 2} \\
& (2 x-1)^{1 / 2} \equiv(2 x-1)^{-1 / 2}(2 x-1) \\
& \therefore I_{n}=3\left(5^{n}\right)-1-n \int_{1}^{5} x^{n-1}(2 x-1)(2 x-1)^{-1 / 2} \partial x \\
& \therefore I_{n}=3\left(5^{n}\right)-1-n \int 2 x^{n}(2 x-1)^{-1 / 2}-x^{n-1}(2 x-1)^{-1 / 2} \partial x
\end{aligned}
$$

Question 5 continued

$$
\begin{aligned}
& \therefore I_{n}=3\left(5^{n}\right)-1-n\left(2 I_{n}-I_{n-1}\right) \\
& \therefore I_{n}=3\left(5^{n}\right)-1-2 n I_{n}+n I_{n-1} \\
& \therefore \quad(2 n+1) I_{n}=n I_{n-1}+3\left(5^{n}\right)-1 \\
& \Rightarrow(2 n+1) I_{n}=n I_{n-1}+3 \times 5^{n}-1
\end{aligned}
$$

(b) In using $n=2 \Rightarrow$

$$
5 I_{2}=2 I_{1}+74
$$

using $n=1 \Rightarrow$

$$
\begin{aligned}
& 3 I_{1}=I_{0}+14 \\
& \therefore 3 I_{1}=\int_{1}^{5}(2 x-1)^{-1 / 2} \partial x+14 \\
& \therefore 3 I_{1}=\left[(2 x-1)^{1 / 2}\right]_{1}^{5}+14 \\
& \therefore 3 I_{1}=16 \Rightarrow I_{1}=\frac{16}{3} \\
& \therefore 5 I_{2}=2 \times \frac{16}{3}+74 \Rightarrow I_{2}=\frac{254}{15}
\end{aligned}
$$

6. It is given that $\left(\begin{array}{l}1 \\ 2 \\ 0\end{array}\right)$ is an eigenvector of the matrix \mathbf{A}, where

$$
\mathbf{A}=\left(\begin{array}{lll}
4 & 2 & 3 \\
2 & b & 0 \\
a & 1 & 8
\end{array}\right)
$$

and a and b are constants.
(a) Find the eigenvalue of \mathbf{A} corresponding to the eigenvector $\left(\begin{array}{l}1 \\ 2 \\ 0\end{array}\right)$.
(b) Find the values of a and b.
(c) Find the other eigenvalues of \mathbf{A}.

Ga). $A x=x x$

Question 6 continued
(b)

$$
\text { b) } \quad \begin{aligned}
A_{n} & =\lambda_{x} \\
\Rightarrow \quad\left(\begin{array}{c}
8 \\
2+2 b \\
a+2
\end{array}\right) & =\left(\begin{array}{c}
8 \\
16 \\
0
\end{array}\right) \\
\therefore a+2 & =0 \Rightarrow a=-2 \\
2+2 b & =16 \Rightarrow b=7
\end{aligned}
$$

$$
\text { (c) } A=\lambda I=\left(\begin{array}{ccc}
4-\lambda & 2 & 3 \\
2 & 7-\lambda & 0 \\
-2 & 1 & 8-\lambda
\end{array}\right)
$$

$$
\operatorname{det}(A-\lambda I)=0 \Rightarrow(4 \lambda)(7-\lambda)(8-\lambda)-2(2(8-\lambda))+3(
$$

$$
(4-\lambda)(7-\lambda)(8-\lambda)-2(2(8-\lambda))+3(2+2(7-\lambda))=0
$$

$$
\operatorname{det}(A-\lambda)=(4-\lambda)(7-\lambda)(8-\lambda)-4(8-\lambda)+6(7-\lambda)+6=0
$$

$$
A=8 \Rightarrow \operatorname{det}(A-\lambda I)=0 \quad 6(7-\lambda+1)
$$

$$
\begin{gathered}
\therefore(4-\lambda)(7-\lambda)(8-\lambda)-4(8-\lambda)+6(8-\lambda)=0 \\
\therefore(8-\lambda)[(4-\lambda)(7-\lambda)+38] \quad \lambda^{2}-11 \lambda+30=0 \\
\therefore \quad(8-\lambda)\left(\lambda^{2}-11 \lambda+30\right)=0 \Rightarrow(\lambda-5)(\lambda-6)=0 \text { Via } \rightarrow \therefore \lambda, \lambda=6
\end{gathered}
$$

Figure 1
The curves shown in Figure 1 have equations

$$
y=6 \cosh x \text { and } y=9-2 \sinh x
$$

(a) Using the definitions of $\sinh x$ and $\cosh x$ in terms of e^{x}, find exact values for the x-coordinates of the two points where the curves intersect.

The finite region between the two curves is shown shaded in Figure 1.
(b) Using calculus, find the area of the shaded region, giving your answer in the form $a \ln b+c$, where a, b and c are integers.

7(a). $y=6 \cosh x$ \& $y=9-2 \sinh x$ @ intersection

$$
\begin{gathered}
\therefore 6 \cosh x=9-2 \sinh x \\
\Rightarrow 63 e^{x}+3 e^{-x}=9-\left(e^{x}-e^{-x}\right) \\
\therefore 3 e^{x}+3 e^{-x}=9-e^{x}+e^{-x} \\
\therefore \quad 4 e^{x}+2 e^{-x}-9=0 \\
\times e^{x}-4 e^{2 x}-9 e^{x}+2=0 \\
\left(e^{x}-2\right)\left(4 e^{x}-1\right)=0 \\
\Rightarrow e^{x}=2 \Rightarrow x=\ln 2 \\
e^{x}=1 / 4 \Rightarrow x=\ln \frac{1}{4}
\end{gathered}
$$

$$
\begin{aligned}
& \text { Question } 7 \text { continued } \\
& \text { (b) Area }=\int_{\ln \frac{1}{4}}^{\ln 2} 9-2 \sinh x d x-\int_{\ln 114}^{\ln 2} 6 \cos k x d x \\
& \therefore \text { Area }=\int_{\ln 1 / 4}^{\ln 2} 9-2 \sinh x-6 \cosh x d x \\
& =[9 x-2 \cosh x-6 \sinh x]_{\ln 2 / 4}^{\ln 2} \\
& =9 \ln 2-2 \cosh [\ln (2)]-6 \sinh [\ln 2] \\
& -9 \ln ^{1 / 4}+2 \cosh \left(\ln \frac{1}{4}\right)+6 \sinh \left(\ln \frac{1}{4}\right) \\
& \frac{1}{4}=\left(2^{2}\right)^{-1} \\
& =9 \ln 2-2 \cdot \frac{2+2^{-1}}{2}-\frac{6}{2}\left(2-2^{-1}\right)-9 \ln \frac{1}{4}+\frac{1}{4}+4 \\
& +3(1 / 4-4) \\
& =9 \ln 2-2-\frac{1}{2}-6+\frac{3}{2}-9 \ln \frac{1}{4}+\frac{1}{4}+4+\frac{3}{4}-12 \\
& =-14+9 \ln 8
\end{aligned}
$$

Figure 2
The curve C, shown in Figure 2, has equation

$$
y=2 x^{\frac{1}{2}}, \quad 1 \leqslant x \leqslant 8
$$

(a) Show that the length s of curve C is given by the equation

$$
s=\int_{1}^{8} \sqrt{ }\left(1+\frac{1}{x}\right) \mathrm{d} x
$$

(b) Using the substitution $x=\sinh ^{2} u$, or otherwise, find an exact value for s.

Give your answer in the form $a \sqrt{ } 2+\ln (b+c \sqrt{ } 2)$ where a, b and c are integers.

$$
\begin{aligned}
& 8(a) \quad y=2 x^{1 / 2} \therefore \frac{\partial y}{\partial x}=x^{-1 / 2} \therefore\left(\frac{\partial y}{\partial x}\right)^{2}=\frac{1}{x}
\end{aligned}
$$

Question 8 continued
(b) $x=\sinh ^{2} u$
frost sort out limits:

$$
\therefore \quad \sqrt{1+\frac{1}{x}}=\operatorname{coth} u
$$

$$
\begin{aligned}
& 8=\sinh ^{2} u \Rightarrow \quad \sinh u=\sqrt{8} \\
& \therefore u=\operatorname{arsinh}(\sqrt{8})=\frac{\ln (\sqrt{8+\sqrt{x}}}{\ln (\sqrt{8}+3)} \\
& 1=\sinh ^{2} u \Rightarrow \sinh u=1 \\
& \therefore u=\operatorname{arshh}(1)=\ln (1+\sqrt{2}) \\
& \text { New limits are } \int_{\ln (1+\sqrt{2})}^{\ln (3+\sqrt{8})} \\
& \sqrt{1+\frac{1}{x}}=\sqrt{1+\frac{1}{\sin ^{2} u}}=\sqrt{\frac{\sinh ^{2} u}{\sinh ^{2} u}+\frac{1}{\sinh ^{2} u}} \\
& c^{2}-s^{2}=1 \\
& =\sqrt{\frac{\sinh ^{2} u+1}{\sinh ^{2} u}}=\sqrt{\frac{\cosh ^{2} u}{\sinh ^{2} u}} \\
& =\operatorname{coth}(u)
\end{aligned}
$$

Question 8 continued

$$
\begin{aligned}
& x=\sinh ^{2} u \\
& \therefore \frac{\partial x}{\partial u}=2 \sinh u \cosh u \\
& \therefore \partial x=2 \sinh u \cosh u \quad \partial u
\end{aligned}
$$

$$
\begin{aligned}
& \text { Now: } \\
& \therefore \sqrt{1+\frac{1}{x}}=\operatorname{coth} u \quad \& \quad \partial x=2 \sinh u \cosh u d u \\
& \therefore S=\int_{1}^{8} \sqrt{1+\frac{1}{x}} \partial x=2 \int_{\ln (1+\sqrt{2})}^{\ln (3+\sqrt{8})} \frac{\cosh u}{s \operatorname{sh} u} \cdot \sinh u \cdot \cosh u \partial u
\end{aligned}
$$

$c^{2}+5^{2}=0 . \ln ^{2 x}$

$$
=2 \int_{\ln (1+\sqrt{2})}^{\ln (3+\sqrt{2})} \cosh ^{2} u d u
$$

$$
=\left[\frac{1}{2} \sinh 2 x+x\right]_{\ln (1+\sqrt{2})}^{\ln (3+\sqrt{3})}
$$

Question 8 continued

$$
\begin{align*}
= & \frac{1}{2} \sinh (2 \ln (3+\sqrt{8}))+\ln (3+\sqrt{8})-\frac{1}{2} \sin \left(\ln (1+\sqrt{2})^{2}\right)-\ln (1+\sqrt{2}) \\
= & \ln (1+\sqrt{2})+\frac{1}{2} \sinh (2 \ln (3+\sqrt{8}))-\frac{1}{2} \sinh \left(\ln (1+\sqrt{2})^{2}\right) \\
= & \ln (1+\sqrt{2})+\frac{1}{2}\left(\frac{e^{\ln \left[(3+\sqrt{8})^{2}\right]}-e^{-\ln \left[(3+\sqrt{3})^{2}\right]}}{2}\right) \\
& -\frac{1}{2}\left(\frac{e^{\ln (1+\sqrt{2})^{2}}-e^{-\ln (1+\sqrt{2})^{2}}}{2}\right) \\
= & \ln (1+\sqrt{2})+\frac{1}{2}\left(\frac{(3+\sqrt{8})^{2}-(3+\sqrt{8})^{-2}}{2}\right) \\
& -\frac{1}{2}\left(\frac{(1+\sqrt{2})^{2}-(1+\sqrt{2})^{-2}}{2}\right)
\end{align*}
$$

Question 8 continued

$$
\begin{aligned}
& =\ln (1+\sqrt{2})
\end{aligned}+\frac{1}{4}(17+12 \sqrt{2}-17+12 \sqrt{2}) 9+\frac{1}{4} \cdot(3+2 \sqrt{2}-3+2 \sqrt{2}) .
$$

